Passive treatment: A walk away solution?

During active mining and post closure, the control of water requires prudent site management to firstly minimize the generation of mine water and secondly to treat where necessary. In order to reduce associated treatment costs in the long term, artificial wetlands have gained acceptance, particularly for treating coal mine drainage. In such circumstances, where iron is often the predominant contaminant of concern, removal utilizes the natural oxidation of iron II (Fe²⁺) to iron III (Fe³⁺) followed by hydrolysis of the iron III as shown below:

As the hydrolysis process generates proton acidity (H⁺), the water being treated must contain sufficient alkalinity to buffer this reaction if it is to remain 'neutral'. For this reason, waters with insufficient buffering capacity are termed 'net acidic' and require distinctly different treatment requirements.

NET ACID WATER TREATMENT

In order to facilitate efficient Fe removal and pH control, successful treatment of net acid water requires alkalinity supplementation. This can be achieved using a number of alkali dosing methods or as has been recently implemented at Pelenna, South Wales (UK), using a Successive Alkalinity Production System (SAPS). The SAPS works by adding alkalinity to the mine water as it vertically passes through a substrate such as bark mulch or mushroom compost. As the substrate is aimed at promoting bacterial processes such as sulphate reduction and subsequent iron sulphide formation, SAPS are also referred to as RAPS or Reducing and Alkalinity Producing Systems (Figure 1).

Monitoring of the influent and effluent chemistry at the Pelenna SAPS reveals good processes thought to be occurring.

![Figure 1: Cross section of a SAPS and processes thought to be occurring](image1)

SAPS LONGEVITY

The continuous accumulation of ochre on the surface of the SAPS could have significant implications for long term SAPS performance if it is not managed. In order to assess this effect, a full scale cross section of the SAPS was reconstructed in the laboratories of the Division of Materials and Minerals at Cardiff University (Figure 3).

![Figure 3: Laboratory reconstruction of the Pelenna SAPS](image2)

Using fresh ochre collected from the SAPS, it became clear that as ochre thickness increased, vertical permeability decreased (Figure 4). Based on these observations, it is anticipated that with time the bed permeability will decrease and the SAPS will become impermeable leading to over-spill unless maintenance is made. Since operation in early 1998, approximately 0.2 m of surface ochre has accumulated. Based on the experimental relationship derived in Figure 4 this observation can be used to predict the longevity of the SAPS.

As shown in Figure 5, problems with vertical permeability are predicted to occur – five years after commissioning, although no account of ochre ageing is included in this prediction. A further complication at Pelenna is that during the period February to May 2000 mine water did not enter the system due to blockage of the mine water distribution network. Therefore, previously deposited ochre may have compacted, thereby potentially creating different sub-surface conditions which may affect long term permeability. However, the short term saving grace of the Pelenna system may be the ~1 m of freeboard available and the wet Welsh weather. Combined, these factors may provide sufficient head to allow flow to continue, albeit at a reduced rate for a longer period of time before remediation engineering is required or the system over-spills.

TREATMENT ALTERNATIVES

A number of SAPS have been installed worldwide and it is considered likely that the observations and predictions made are applicable to these other systems where surface ochre is accumulating. Successful treatment of net acidic mine water requires separation of the alkalinity supplementation and Fe removal stages. The alkalinity should be added in an anaerobic environment and then the water exposed to...
Treatment options available include:
- A modified SAPS system;
- Anoxic limestone drains;
- Bacterial remediation; and
- Anaerobic reactive barriers inside workings.

The latter treatment option is particularly attractive and has recently been implemented at Aznalcóllar, in Spain, and at Renishaw Park, in the UK. As the system relies on treating the minewater prior to discharge from the mine, it is essential that mine planning is proactive and preparations are initiated prior to abandonment of a mining area.

Successful long-term treatment using systems such as wetlands and SAPS requires ongoing management and they should not be considered a walk-away option.

By Ben Rees*, Rob Bowell1,2, Matt Dey2 and Keith Williams2

1*Geochemist
SRK Consulting, Summit House, 9/10 Windsor Place, Cardiff, U.K. CF10 3SR. Email: brees@srk.co.uk Tel: +44 (0) 29 2023 5566 Fax: 2066 5413
2Cardiff University, Division of Materials and Minerals, Cardiff, U.K. Tel: +44 (0) 29 2087 4000.

REFERENCES